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Auto-Encoder



(Under-Complete) Auto-Encoder

» Minimize distance between input and reconstruction <«
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- The smaller is the bottleneck z, fewer important features are kept
- Similar to other methods of dimensionality reduction like PCA



Denoising Auto-Encoder

—> Minimize distance between clean input and reconstruction +——

\

Encoder

; g
N /

f(g(x))

- Add noise to input, try to denoise it by reconstruction with clean input



Variational
Auto-Encoder



Variational Auto-Encoder

Instead of producing a deterministic latent code z, can we generate a distribution?
- Generate new images, not simply a reconstruction, but sampling from it

Could we force that the latent code’s dimensions are disentangled?
- Modify only an aspect of the image (e.g. keep the face but make hair blond)

[Kingma and Welling, ICLR 2013] 6



https://arxiv.org/abs/1312.6114

Variational Auto-Encoder

Given the:

Prior p(2)
Likelihood p(x | z)
Posterior p(z | x)
Evidence p(x)

We want to estimate the posterior, aka what should be our latent code given x.

By Bayes and then multiplication rule, we have:

p(x|z)p(z) p(x,z)

p(z|x) = p(x) - p(x)

Problem: the evidence p(x) is untractable (aka it’s hard to compute)

Thus, using variational inference we are going to approximate the posterior p(z | x)
by a distribution g(z) that we defined to be tractable.

Our goal is to minimize the divergence between them:

p(z|x)
q(z) 7

min KL(q(2)|Ip(z|x)) = — )’ q(z) log



Variational Auto-Encoder

KL@@llpz1) = - ¥ q(2)log 222
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Variational Auto-Encoder

p(z|x)
q(z)
p(x,z)

(x)
= - ) 4a(z)log =

1

KL(g(2)llp(zlx)) = — ) q(z)log

pix,z) 1
= _ ] :
2, 9@ 08 =i
= — Z q(z)[log p(x. 2) — log p(x)] By the properties of log

q(z)



Variational Auto-Encoder

KL@@p(z1x) = - 3 a(2) log 22
p(x,2)
= - Y a@log 55
1
p(x, z) 1
= — 1 .
2, 0@ 08 =i
= — Z q(z)[log E] . )z ) — log p(x)] By the properties of log
= — Z q(z) log ( + Z q(z) log p(x)
=~ Y g(2)log ;( )) +logp(0) Y q(2)

Because we integrate/sum over z and not x
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Variational Auto-Encoder

p(z|x)
q(z)
p(x,z)

)

=~ Z q(z) log Z< )

1

KL(g(2)llp(zlx)) = — ) q(z)log
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= - Y q(2)llog ; " )z) log p(x)] By the properties of log
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Variational Auto-Encoder

Re-ordering the term of the equation, we have:

p(x, z)
q(z)

log p(x) = KL(q(2)||p(z|x)) + ) q(z)log

X is a constant in our case (we are training on a fixed dataset), the log of a probability is < 0, and the KL is always > 0. Therefore if we
p(x,z)

<(;(’> , we will minimize the KL as intended:

maximize the Variational Lower Bound £ = )’ g(z) log

12



Variational Auto-Encoder

Re-ordering the term of the equation, we have:

p(x, z)
q(z)

log p(x) = KL(q(2)||p(z|x)) + ) q(z)log

X is a constant in our case (we are training on a fixed dataset), the log of a probability is < 0, and the KL is always > 0. Therefore if we

p(x,z)
(z) '
L= Z q(z) log p(J(c, )z)
p(x|2)p(z)
= log
Zq( ) T
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Variational Auto-Encoder

Re-ordering the term of the equation, we have:

p(x, z)
q(z)

log p(x) = KL(q(2)||p(z|x)) + ) q(z)log

X is a constant in our case (we are training on a fixed dataset), the log of a probability is < 0, and the KL is always > 0. Therefore if we
p(x,z)
(z) '

p(x, z)
L= 1
Zq(Z) og )

p(x|2)p(z)
= log
Zq( ) )

= 2 g(z)[log p(x|z) + log

p(z)
4@
= )’ 4(z) log p(x|2) + ) q(z)log —— a2

q(2)
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Variational Auto-Encoder

Re-ordering the term of the equation, we have:

p(x, z)
q(z)

log p(x) = KL(q(2)||p(z|x)) + ) q(z)log

X is a constant in our case (we are training on a fixed dataset), the log of a probability is < 0, and the KL is always > 0. Therefore if we

maximize the Variational Lower Bound £ = Z g(z) lo p(f;z) ;

p(x, z)
L= 1
Zq(Z) og )

p(x|2)p(z)
= log
Zq( ) )

= 2 g(z)[log p(x|z) + log

p(z)

@'

- 2 q(z) log p(x|z) + 2 q(z) log E ;
= Z g(z) log p(x|z) — KL(g(z)||p(z))

o(z) log p(x|z) — KL(g(z)||p(z))
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Variational Auto-Encoder

Thus our variational lower bound is made of two terms:
L = Eyz log p(x|z) — KL(q(2)||p(z))

Reconstruction error:

Eyz) log p(x|z) «x E4) log p(x|x) because the decoder is deterministic. If we choose a tractable distribution for p(-) such as the Gaussian
distribution, our conditional probability will look like:

p(x|%) = e
And its log by:

log p(x|%) = —|x — X|*
Which is the Mean Squared Error, aka can our model reconstruct correctly the input.

KL Divergence:

The right part says that our network-distribution g(z) must match the distribution p(z). Now again, we choose p(+) to follow the Gaussian
distribution (with zero mean and unit variance N'(0, I)).

Now, we are never going to generate z directly by the encoder (it won't be a distribution), but we are going to generate the parameters of the
distribution g(-) assuming it's gaussian.

So our KL will be:

KL(N (4, DIIN(0, D))

16



Variational Auto-Encoder

\

Encoder
q(z | x)

» Minimize distance between input and reconstruction <«
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— KL Divergence with Gaussian prior

The KL Divergence disentangles the latent code by forcing a unique mode per dimension!
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Reparametrization Trick

Original form Reparameterised form

y < 21/0¢; O O -rO©
= 0L/0¢
: Deterministic node [Kingma, 2013]
[Bengio, 2013]

[Kingma and Welling 2014]

. : Random node [Rezende et al 2014]

- Sampling operation cannot be backpropagated
- Thus sample a random variable € and multiply the predicted variance o then
add to predicted mean u

Z=Uu+exo

18



Beta Variational Auto-Encoder

E,, (z|x) [log po (x|2)] — B Dk (g4 (2z|x)||p(2))

Add a f factor to the KL divergence.

—> High factor means better disentangling
- Low factor means better reconstruction

Trade-off to be made between both.
Later work propose to start with f = 0 and to increases it linearly

[Higgins et al. ICLR 2017], [Burgess et al. NeurlPS 2017]
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https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/abs/1804.03599

Codebook
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- Generate a latent code that is matched to a discrete space
— Avoid posterior collapse where the decoder mostly ignore the latent code
- The sampled latent code is too weak or noisy
— Decoder simply generates a new image from noise
- Argmin is not differentiable thus gradient is copied (similarly to STE in quantization)

[van den Oord et al. NeurlPS 2017] 20



https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf

Hierarchical VAE

() ()

-« — shared—»
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= Increase expressiveness of the model by partitioning the latent variables into disjoint
groups
-> z, is conditioned by z,

[Kaee S@nderby et al. NeurIPS 2016] 21



https://arxiv.org/abs/1602.02282v3

Generative Adversarial Networks



Xreal

Real or Fake?

Xfake

Adversarial training between a discriminator and a generator.

Discriminator has to distinguish between real and fake images.

max Ex-epata [log D(x")] + Egnp(z) [log (1 — D(G(2)))]

Generator must fool the discriminator.

max . p(z) [log D(G(2))]
[Goodfellow et al. NeurlPS 2014] 23



https://arxiv.org/abs/1406.2661

Xreal

Real or Fake?

Xfake

Adversarial training between a discriminator and a generator.

Discriminator has to distinguish between real and fake images.

max Ex-epata [log D(x")] + Egnp(z) [log (1 — D(G(2)))]

Generator must fool the discriminator.

max . p(z) [log D(G(2))]
[Goodfellow et al. NeurIPS 2014] 24



https://arxiv.org/abs/1406.2661

Real or Fake?

Xfake

Adversarial training between a discriminator and a generator.

Discriminator has to distinguish between real and fake images.

max Ex-epata [log D(x")] + Egnp(z) [log (1 — D(G(2)))]

Generator must fool the discriminator.

max . p(z) [log D(G(2))]
[Goodfellow et al. NeurlPS 2014] 25



https://arxiv.org/abs/1406.2661
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Project and reshape

- Use convolutions instead of FC layers
- Upsample using transposed convolutions

[Radford et al. ICLR 2016]
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https://arxiv.org/abs/1511.06434

man man woman
with glasses without glasses without glasses

woman with glasses

Vector arithmetic for visual concepts:

1. Find many noise vectors that produce man with glasses, man w/o glasses, etc.
2. Average noise vectors per category

3. Do some basic arithmetic with the noise vectors

4. Generate!

[Radford et al. ICLR 2016]
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https://arxiv.org/abs/1511.06434

cGAN: Conditional-GAN

w

Xreal

Real or Fake?

Z m7

(noise) Xfake

- Add label in input to both the generator and discriminator
- Now the generator, given label “4” will not tolerate a “5” even if it’s very realistic

[Mirza and Osindero, NeurlPS 2014] 28



https://arxiv.org/abs/1411.1784

Labels to Street Scene Labels to Facade BW to Color

output
Edges to Photo

output

- Like cGAN but conditioned with various kind of data (segmentation, maps, drawing, etc.)

[Isola et al. CVPR 2017] 29



https://arxiv.org/abs/1611.07004

ProGAN: Progressive growing

G Latent Latent Latent
v
8x8 ,EI
L | |
————— 1
. .  ———
1024x1024
m. R R
i ! Reals . {Reals ! iReaIs
D B . [ 1024x1024 |
. [ ]
E - L 1
vy v L ]
[ 88 | = -
Training progresses >

- Generate progressively higher resolution images by extending the architecture
- Akin to curriculum learning

[Karras et al. ICLR 2018] 30



https://arxiv.org/abs/1710.10196

MSG-GAN: Multi-Scale Gradients GAN

Real Images downsampled to various resolutions
16 x 16

. (1x1)Conv . (2 x 2) Average Pool (downsample)
] @x4)ConvT  MinibatchStd
. (3 x 3) Conv . (4 x4) Conv highest

resolution

. (2 x 2) Upsample . Fully Connected samples

J Combine Function

8x8

4x4

16 x 16 xc3

4x4xcl

latent vector I I

Ygen T

16 x 16

8x8

6x 16 x c3'

4x4

4x4xcl'

- Synthetize in the same time all resolutions

Critic-loss
function

e

- Simpler architecture than ProGAN and much faster to converge with better results

[Karnewar and Wang, CVPR 2020]
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https://arxiv.org/abs/1903.06048

StyleGAN

Latent z € Z Latent z € Z . Noise
Synthesis network ¢
Normalize Const 4x4x512
Mapping

Fully-connected network f

L (‘”;(—‘;gx)) L)

(a) Traditional (b) Style-based generator

- Based on ProGAN

- Mapping network transforms latent vector noise z

- Which is then added at multiple level with AdalN

- Latent vector is more disentangled leading to easier vector arithmetic because
of the separation of style and stochastic variations

[Karras et al. CVPR 2019] 32



https://arxiv.org/abs/1812.04948

Based on StyleGAN

Which face is real?

whichfaceisreal.com

[Karras et al. CVPR 2019] 33



https://arxiv.org/abs/1812.04948
https://www.whichfaceisreal.com/

CycleGAN

Summer _ Winter

Monet Z_ Photos

zebra—) horse '

{ 2 : ; ‘ .5 " - e X
Photograph Monet Van Gogh Cezanne Ukiyo-e

- Unpaired Image-to-Image Translation
- No need to have matching domains!

cee 3

[Zhu et al. ICCV 2017] 34



https://arxiv.org/abs/1703.10593

CycleGAN
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- Translate image from domain X to Y then back to X
- And vice-versa
- When in domain Y, a discriminator determines if
domain is correct

[Zhu et al. ICCV 2017]
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https://arxiv.org/abs/1703.10593

Training difficulty

| iR T

—— D_loss
—— G_loss

o 2500 5000 7500 10000 12500 15000 17500
Iter

Training GANs is much more challenging than your common classification model:

- Losses, by definition, do not converge to zero
- The discriminator and the generator needs to be balanced, of equal “efficiency”
- The optimal number of updates per model is not necessarily the same

[beckham.nz 2021] 36



https://beckham.nz/2021/06/28/training-gans.html

Training difficulty

0 2500 5000 7500 10000 12500 15000 17500
Iter

Training GANs is much more challenging than your common classification model:
Losses, by definition, do not converge to zero

- The discriminator and the generator needs to be balanced, of equal “efficiency”
- The optimal number of updates per model is not necessarily the same

Hard to know when to stop (more on that in a few slides)

The optimizer (often Adam) hyperparameters are super sensitive

Losses can explode

[beckham.nz 2021] 37



https://beckham.nz/2021/06/28/training-gans.html

Training difficulty

0 2500 5000 7500 10000 12500 15000 17500
Iter

Training GANs is much more challenging than your common classification model:
Losses, by definition, do not converge to zero
- The discriminator and the generator needs to be balanced, of equal “efficiency”

- The optimal number of updates per model is not necessarily the same
- Hard to know when to stop (more on that in a few slides)

- The optimizer (often Adam) hyperparameters are super sensitive
- Losses can explode
- Models can collapse:
- Mode collapse: same image is always generated
- Mode dropping: some factor of variations are never generated

[beckham.nz 2021] 38



https://beckham.nz/2021/06/28/training-gans.html

Spectral Normalization

To facilitate training, it helps that the discriminator is K-Lipschitz for a small K.
- Wasserstein GAN (W-GAN)
- Spectral Normalization GAN (SN-GAN)

SN-GAN is the simplest and most efficient:
—> Divide each weight of the discriminator by its spectral norm, aka the largest singular
value:

Wy =

2.0 1
1.5 4

1.0

i SRR Y M'-»-MM}IM“W

—— D_loss —— D_loss
—— G_loss —— G_loss

0 2500 5000 7500 10000 12500 15000 17500 0 5000 10000 15000 20000 25000
tter tter

without SN with SN

[beckham.nz 2021], [W-GAN, Arjovsky et al. ICML 2017], [Miyato et al. ICLR 2018] 39
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https://proceedings.mlr.press/v70/arjovsky17a.html
https://arxiv.org/abs/1802.05957

Is My Generative Model Good?



IS: Inception Score

IS(G) = exp ( x~p, Drr(p(y|x) || p(y) ) )

1. Produce likelihoods p(y|x) with a pre-trained Inception network
2. Average likelihoods to have marginal probability p(y)
3. Compute KL divergence between them + average over multiple split + exp

Higher is better, minimum score is O. p(y) — fx p(ylx)pg (x)

We want:
- Alow-entropy conditional probability p(x|y) (aka high confidence on a class label)
- A high-entropy marginal probability p(y) to have more diversity

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-
372dff6a8c7a
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FID: Frélet Inception Distance

FID = | — po|® + tr(Z + 2y — 2(25,,)Y2)

1. Extract features at a deep but not last layer for both real and generated images
2. Minimize this distance between on the mean and covariance activations

Lower is better, minimum score is O.

42



Amazon Mechanical Turk

Access a global, on-demand, 24x7 workforce

Get started with Amazon Mechanical Turk

Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace that makes it easier for individuals and businesses to outsource their processes and jobs
to a distributed workforce who can perform these tasks virtually. This could include anything from conducting simple data validation and research to more
subjective tasks like survey participation, content moderation, and more. MTurk enables companies to harness the collective intelligence, skills, and insights
from a global workforce to streamline business processes, augment data collection and analysis, and accelerate machine learning development.

- Often papers also use humans to validate if a model X produces images more
realistic than a model Y

- Platform like Mechanical Turk can do that, but there is a cost!
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Style Transfer
Auto-Regressive
Normalizing Flows
NeRF



Style Transfer

Given pretrained VGG16 network:
1. Clone content image as X
2. Minimize content loss (MSE) between X and Content image

Minimize style loss (MSE) between gram matrices of X and Style image

All that is done at the features level not at the pixels level.

[Gatys et al. CVPR 2016] 45



https://arxiv.org/abs/1508.06576

Auto-Regressive

occluded completions original

A Lk e
v ’ ha v v v g
. - . K .‘ ! . l \ ; - r

po(X) = Hz lp.g(x,|X<,)

- Image generation as a sequence modeling task, akin to language model in NLP
- Can be slow to generate because of a limited parallelizability
- Can suffer from very long sequences

[PixelRNN, van den Oord et al. ICLR 2016], [Sparse Transformer, Child et al. arXiv 2019] 46



https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1904.10509

Auto-Regressive (dall-e)

TexT proMPT  anillustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED

IMAGES 0

.

¢

a small red block sitting on a large green block

a stack of 3 cubes. a red cube is on the top, sitting on a green cube.
the green cube is in the middle, sitting on a blue cube. the blue cube is
on the bottom. ™

an emoji of a baby penguin wearing a blue hat, red gloves, green shirt,
and yellow pants u
AN

- Autoregressive model based on GPT-3 (transformer for NLP)
- Predict pixels distribution given image textual description

[Ramesh et al. arXiv 2021] 47



https://arxiv.org/abs/2102.12092

Normalizing Flows

¢ omsm

invertible 1x1 conv @ split
]
1x28x28 1x28x28
(a) One step of our flow. (b) Multi-scale architecture 1v 2016).

N lizi
| =

P e

- Whole network is invertible (thus no pooling, need to have same dimension through the
network!)

- During training learn the mapping f (x) = z, with z a multivariate Gaussian

- During inference, generate images by sampling z and doing the inverse mapping f ~1(2)

[Glow, Kingma and Dhariwal, NeurlPS 2018], third image source 48


https://arxiv.org/pdf/1807.03039.pdf
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NeRF: Neural Radiance Fields

Input Images Optimize NeRF Render new views
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5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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-‘F‘ F ) \..'R“: % Ray 1 /\ 2
-‘ b P ~ P R — 2
>
& &

- Volume rendering similar to ray tracing, learn to generate a pixel color and a
volume density given a 3D location and 2D viewing direction

- Can be used extrapolate new views

- Use 9 fully connected layers + ReLU

[NeRF, Mildenhall et al. ECCV 2020]
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https://arxiv.org/abs/2003.08934

Small break,
then coding session!



