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Auto-Encoder



(Under-Complete) Auto-Encoder
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Encoder
𝑔

Decoder
𝑓𝑧

𝒙 𝑓(𝑔 𝒙 )

Minimize distance between input and reconstruction

- The smaller is the bottleneck 𝑧, fewer important features are kept
- Similar to other methods of dimensionality reduction like PCA 



Denoising Auto-Encoder
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Encoder
𝑔

Decoder
𝑓𝑧

𝒙 𝑓(𝑔 𝒙 )

Minimize distance between clean input and reconstruction

- Add noise to input, try to denoise it by reconstruction with clean input



Variational
Auto-Encoder



Variational Auto-Encoder
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Instead of producing a deterministic latent code 𝑧, can we generate a distribution?
à Generate new images, not simply a reconstruction, but sampling from it

Could we force that the latent code’s dimensions are disentangled?
à Modify only an aspect of the image (e.g. keep the face but make hair blond)

[Kingma and Welling, ICLR 2013]

https://arxiv.org/abs/1312.6114


Variational Auto-Encoder

7

Given the:
- Prior 𝑝 𝒛
- Likelihood 𝑝 𝒙 𝒛)
- Posterior 𝑝 𝒛 𝒙)
- Evidence 𝑝(𝒙)

We want to estimate the posterior, aka what should be our latent code given 𝒙.

By Bayes and then multiplication rule, we have:

Problem: the evidence 𝑝(𝒙) is untractable (aka it’s hard to compute)

Thus, using variational inference we are going to approximate the posterior 𝑝 𝒛 𝒙)
by a distribution 𝑞 𝒛 that we defined to be tractable.

Our goal is to minimize the divergence between them:



Variational Auto-Encoder
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Variational Auto-Encoder
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Variational Auto-Encoder
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Because we integrate/sum over 𝒛 and not 𝒙



Variational Auto-Encoder
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Variational Auto-Encoder
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Re-ordering the term of the equation, we have:



Variational Auto-Encoder
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Re-ordering the term of the equation, we have:



Variational Auto-Encoder
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Re-ordering the term of the equation, we have:



Variational Auto-Encoder
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Re-ordering the term of the equation, we have:



Variational Auto-Encoder
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Thus our variational lower bound is made of two terms:

Reconstruction error:

KL Divergence:



Variational Auto-Encoder
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Encoder
𝑞 𝒛 𝒙)

Decoder
𝑝 𝒙 𝒛)𝑧

𝒙 *𝑥

Minimize distance between input and reconstruction

𝜇

𝜎

KL Divergence with Gaussian prior

The KL Divergence disentangles the latent code by forcing a unique mode per dimension!



Reparametrization Trick
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- Sampling operation cannot be backpropagated
- Thus sample a random variable 𝜖 and multiply the predicted variance 𝜎 then 

add to predicted mean 𝜇

𝒛 = 𝜇 + 𝜖 × 𝜎



Beta Variational Auto-Encoder
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Add a 𝛽 factor to the KL divergence.

à High factor means better disentangling 
à Low factor means better reconstruction

Trade-off to be made between both.
Later work propose to start with 𝛽 = 0 and to increases it linearly

[Higgins et al. ICLR 2017], [Burgess et al. NeurIPS 2017]

https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/abs/1804.03599


VQ-VAE

20[van den Oord et al. NeurIPS 2017]

à Generate a latent code that is matched to a discrete space
à Avoid posterior collapse where the decoder mostly ignore the latent code

à The sampled latent code is too weak or noisy
à Decoder simply generates a new image from noise

à Argmin is not differentiable thus gradient is copied (similarly to STE in quantization)

https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf


Hierarchical VAE

21[Kaee SØnderby et al. NeurIPS 2016]

à Increase expressiveness of the model by partitioning the latent variables into disjoint 
groups

à 𝑧4 is conditioned by 𝑧5

https://arxiv.org/abs/1602.02282v3


Generative Adversarial Networks



GAN
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Adversarial training between a discriminator and a generator.

Discriminator has to distinguish between real and fake images.

Generator must fool the discriminator.

[Goodfellow et al. NeurIPS 2014]

G𝑧
(noise)

D
𝒙𝒓𝒆𝒂𝒍

𝒙𝒇𝒂𝒌𝒆

Real or Fake?

https://arxiv.org/abs/1406.2661
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DC-GAN

26[Radford et al. ICLR 2016]

- Use convolutions instead of FC layers
- Upsample using transposed convolutions

https://arxiv.org/abs/1511.06434


DC-GAN

27[Radford et al. ICLR 2016]

Vector arithmetic for visual concepts:
1. Find many noise vectors that produce man with glasses, man w/o glasses, etc.
2. Average noise vectors per category
3. Do some basic arithmetic with the noise vectors
4. Generate!

https://arxiv.org/abs/1511.06434


cGAN: Conditional-GAN

28[Mirza and Osindero, NeurIPS 2014]

- Add label in input to both the generator and discriminator
- Now the generator, given label “4” will not tolerate a “5” even if it’s very realistic

G
𝑧

(noise)

D
𝒙𝒓𝒆𝒂𝒍

𝒙𝒇𝒂𝒌𝒆

Real or Fake?𝒚
(label)

https://arxiv.org/abs/1411.1784


Pix2Pix

29[Isola et al. CVPR 2017]

- Like cGAN but conditioned with various kind of data (segmentation, maps, drawing, etc.)

https://arxiv.org/abs/1611.07004


ProGAN: Progressive growing

30[Karras et al. ICLR 2018]

- Generate progressively higher resolution images by extending the architecture
- Akin to curriculum learning

https://arxiv.org/abs/1710.10196


MSG-GAN: Multi-Scale Gradients GAN

31[Karnewar and Wang, CVPR 2020]

- Synthetize in the same time all resolutions
- Simpler architecture than ProGAN and much faster to converge with better results

https://arxiv.org/abs/1903.06048


StyleGAN

32[Karras et al. CVPR 2019]

- Based on ProGAN
- Mapping network transforms latent vector noise 𝑧
- Which is then added at multiple level with AdaIN
- Latent vector is more disentangled leading to easier vector arithmetic because 

of the separation of style and stochastic variations

https://arxiv.org/abs/1812.04948


Based on StyleGAN

33[Karras et al. CVPR 2019]

Which face is real?

whichfaceisreal.com

https://arxiv.org/abs/1812.04948
https://www.whichfaceisreal.com/


CycleGAN

34[Zhu et al. ICCV 2017]

- Unpaired Image-to-Image Translation
- No need to have matching domains!

https://arxiv.org/abs/1703.10593


CycleGAN

35[Zhu et al. ICCV 2017]

- Translate image from domain X to Y then back to X
- And vice-versa

- When in domain Y, a discriminator determines if
domain is correct

https://arxiv.org/abs/1703.10593


Training difficulty

36[beckham.nz 2021]

Training GANs is much more challenging than your common classification model:
- Losses, by definition, do not converge to zero

- The discriminator and the generator needs to be balanced, of equal “efficiency”
- The optimal number of updates per model is not necessarily the same

https://beckham.nz/2021/06/28/training-gans.html
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Training difficulty

38[beckham.nz 2021]

Training GANs is much more challenging than your common classification model:
- Losses, by definition, do not converge to zero

- The discriminator and the generator needs to be balanced, of equal “efficiency”
- The optimal number of updates per model is not necessarily the same

- Hard to know when to stop (more on that in a few slides)

- The optimizer (often Adam) hyperparameters are super sensitive
- Losses can explode
- Models can collapse:

- Mode collapse: same image is always generated
- Mode dropping: some factor of variations are never generated

https://beckham.nz/2021/06/28/training-gans.html


Spectral Normalization

39[beckham.nz 2021], [W-GAN, Arjovsky et al. ICML 2017], [Miyato et al. ICLR 2018]

To facilitate training, it helps that the discriminator is 𝐾-Lipschitz for a small 𝐾.
- Wasserstein GAN (W-GAN)
- Spectral Normalization GAN (SN-GAN)

SN-GAN is the simplest and most efficient:
à Divide each weight of the discriminator by its spectral norm, aka the largest singular 
value:

without SN with SN

https://beckham.nz/2021/06/28/training-gans.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://arxiv.org/abs/1802.05957


Is My Generative Model Good?



IS: Inception Score

41

1. Produce likelihoods p(y|x) with a pre-trained Inception network
2. Average likelihoods to have marginal probability p(y)
3. Compute KL divergence between them + average over multiple split + exp

Higher is better, minimum score is 0.

We want:
- A low-entropy conditional probability p(x|y) (aka high confidence on a class label)
- A high-entropy marginal probability p(y) to have more diversity

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-
372dff6a8c7a



FID: Frélet Inception Distance
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1. Extract features at a deep but not last layer for both real and generated images
2. Minimize this distance between on the mean and covariance activations

Lower is better, minimum score is 0.



Human
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- Often papers also use humans to validate if a model X produces images more 
realistic than a model Y

- Platform like Mechanical Turk can do that, but there is a cost!



Style Transfer
Auto-Regressive

Normalizing Flows
NeRF



Style Transfer

45[Gatys et al. CVPR 2016]

Given pretrained VGG16 network:

1. Clone content image as X
2. Minimize content loss (MSE) between X and Content image

Minimize style loss (MSE) between gram matrices of X and Style image

All that is done at the features level not at the pixels level.

https://arxiv.org/abs/1508.06576


Auto-Regressive

46[PixelRNN, van den Oord et al. ICLR 2016], [Sparse Transformer, Child et al. arXiv 2019]

- Image generation as a sequence modeling task, akin to language model in NLP
- Can be slow to generate because of a limited parallelizability
- Can suffer from very long sequences

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1904.10509


Auto-Regressive (dall-e)

47[Ramesh et al. arXiv 2021]

- Autoregressive model based on GPT-3 (transformer for NLP)
- Predict pixels distribution given image textual description

https://arxiv.org/abs/2102.12092


Normalizing Flows

48[Glow, Kingma and Dhariwal, NeurIPS 2018], third image source

- Whole network is invertible (thus no pooling, need to have same dimension through the 
network!)

- During training learn the mapping 𝑓 𝑥 = 𝑧, with 𝑧 a multivariate Gaussian
- During inference, generate images by sampling 𝑧 and doing the inverse mapping 𝑓>4(𝑧)

https://arxiv.org/pdf/1807.03039.pdf
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html


NeRF: Neural Radiance Fields

49[NeRF, Mildenhall et al. ECCV 2020]

- Volume rendering similar to ray tracing, learn to generate a pixel color and a 
volume density given a 3D location and 2D viewing direction

- Can be used extrapolate new views
- Use 9 fully connected layers + ReLU

https://arxiv.org/abs/2003.08934


Small break,
then coding session!


