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Few-Shot Learning



Few-Shots Learning
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Kaggle’s Humpback Whale identification



http://vis-www.cs.umass.edu/lfw/
https://github.com/brendenlake/omniglot
https://www.kaggle.com/c/humpback-whale-identification

Few-Shots Learning

1. Learn to classify the few labeled samples in the background set
2. With a a few labeled samples in support set, classify the query set

Training: Testing:
0688_01.png 0688_02.png 0671_01.png 0671_.02.png 0394_01.png 0394_02.png 0330.01.png 0330_02.png
0688_05.png 0688_06.png 0671_05.png 0671.06.png 0394_05.png 0394_06.png 0330_05.png 0330_06.png
Latin F Korean B/P Greek Alpha Futurama F

Number of labeled samples / class: K-shots

Number of classes in testing: N-ways



Metric Learning

A huge, potentially growing number of classes.
Less than a dozen labeled samples per class.
Discriminative model is impossible.

What if we learn a metric instead?



Metric Learning

Distance:
d(x1,x2) = [If (x1) — f(x)ll, € RT

Similarity:

s(x1,x3) = COS(f(x1)»f(x2)) €[-1,+1]

With f(x) € R% a features extractor (e.g. ConvNet).

Given two images of the class, we want:
- Minimize distance
- Maximize similarity

Given two images of different classes, we want:
- Maximize distance
- Minimize similarity



Siamese Network

[Chopra et al. CVPR 2005]
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f(x;) € R?

parameters

f(x;) € R?

If (x1) = f(x)ll, € RT



http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Contrastive Loss

D = |If(x1) — f(x2)ll € RT

1 1
Lcontrastive(y» D) = E(l — y)DZ + Eymax(m — D, 0)2




Weaknesses of Pairwise Models

- The margin m may be hard to tune, especially because distributions can change
through training

- A double-margin may improve to avoid collapsing all positive samples together

- Try to learn an absolute distance between images



Triplet Network

We want to learn relative distance between samples

Given an anchor x,, we want to have a small distance with a positive (same class) x..:

min|[f(xg) — fCe)ll2

And maximize with a negative (different class) x_:

max||f (xg) — f(x)]l2

Therefore we want that:

1f (xa) = Fx )Nl > If (xa) = Fx)]
1f (o) = fx )Ml = lIf (xa) = FCe DI >0

Add a margin m to ensure extra separability:

1f (o) = fx )Mz = lIf (xa) = Flx DI >m

Thus the loss is:

min max(||f(xq) — fCe)llz =l (xg) = Fx)I +m, 0)

[Hoffer et al. SIMBAD 2015] 10



https://arxiv.org/abs/1412.6622

Triplet Network

Shared dy = lIf(xg) — fFx ), € RT
parameters 1

y

f(xg) € R?
E— d-—d, >m

A

A

Shared d_= |If(x)) — fFxll, € RT —
parameters 4

A\ 4

f(x_) e R?
—

11



Hard Negative Mining

Most triplets are easy.

We want to sample either: Easy negatives
Hard negatives: Semi-hard negatives
| (7) |
If(xa) = FOe)llz > MIf (k) = FOeDI[+m [ g |

Hard negatives

Semi-Hard negatives:

1f (xa) = flx)llz > NIf (xa) = FO

Pretty much essential to have State-of-the-Art performance with Triplet Networks!
12



N-Pairs
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(a) Triplet loss (b) (N+1)-tuplet loss (¢) N-pair-mc loss

Efficient generalization of Triplet networks that uses the whole batch.

[Sonh, NeurIPS 2016]
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https://papers.nips.cc/paper/2016/hash/6b180037abbebea991d8b1232f8a8ca9-Abstract.html

Troubles in Metric Learning...

CUB200 mCars196 mSOP N CUB200 mCars196 ®SOP

(2006) (2017

Time

(a) The trend according to papers (b) The trend according to reality

Fig. 4. Papers versus Reality: the trend of Precision@1 of various methods over the
years.

The gain of more recent Metric Learning models may come from:
- Better backbone

- Better hyperparameters tuning
- Better data augmentation

[Musgrave et al. arXiv 2020]

14


https://arxiv.org/abs/2003.08505

FaceNet

-l.mn
1.22

1.33

Triplet Network with semi-hard
negative mining.

Pretty much solved the LFW dataset.

Distance between pairs

[Schroff et al. CVPR 2015] 15



https://arxiv.org/abs/1503.03832

Meta-Learning MAML

Learning to learn:

- Learn a model that will be able to learn
quickly given a few samples

Outer and inner loop:

- Inner loop learns to classify well a few
labeled samples.

- QOuter loop learns to have good weights

for the inner loop.

During inference, perform only inner loop.

[Finn et al. ICML 2017]

— meta-learning

9 ---- |earning/adaptation
VL
VL,
ve!l Ny 03
C

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: o, 3: step size hyperparameters
1: randomly initialize #
2: while not done do
3:  Sample batch of tasks 7; ~ p(7T)

4: forall 7; do
5: Evaluate VL7, (fs) with respect to K examples
6 Compute adapted parameters with gradient de-

scent: 8; = 0 — aVe L7 (fo)
end for

7:
8: Update § < 6 — Vg Z’E»«-p(’]’) L, (fg;)
9: end while

16


https://arxiv.org/abs/1703.03400

Meta-Learning MAML

Does MAML really learns to learn (rapid learning)?

More probably it manages to learn features that generalize well (feature reuse)

Rapid Learning Feature Reuse

EE* . Task 1
1

0

, Task 1
() /
\\/\

| RN §

ERSNR
Task 3; Task 2

0

[Raghu et al. ICLR 2020]
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—p Outer loop

b~
- = ==p Inner loop
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https://arxiv.org/abs/1909.09157

Self-Supervised Learning

(also Unsupervised Learning)



Setting

1. Learn a backbone with a lot of unlabeled data using a self-designed objective

2. Freeze the backbone
3. Learn a classifier on top of it on labeled data.

— Evaluate how much the learned representation (features extracted by
ConvNet) is useful.

It can be useful to have a good model pretraining in order to do transfer learning
later.

19



Rotation

Conv \Jet

—> g(X.y=0) — " ™| model F() |
Rotate 0 degrees . o
Rotated image: X~
Com\let _
— ol X, y=1 —b
g(X. y=1) & model F()
Rotate 90 d.y.,rees —
Rotated image: X~
. | ConvNet _
. > glX,y=2) ‘ . model F()
Image X Rotate 180 degrees .
Rotated image: X~
Com\let

— gl X, y=3) —>

| » model F( )

Rotated image: X~

Rotate 270 degrees

Learn what is the rotation applied.

_l'

| ()bl..Lll\Lb

| > Maximize prob

F'(x)

I Predict 0 degrees rotation (v+0)
I
|

» Maximize prob.

F'. llfxl]
Predict 90 degrees rotation (y~1)

Max:mlze prob |
Flx)
I Pn,d:u 180 degrees rotation (w 2) l

| |
_l_» Maximize prob. |

Flx) |

rees rotation (y 3)

-
i

e

edic

270 deg

- Thus it must learn what is the structure of the visual world.

[Gidaris et al. ICLR 2018]



https://arxiv.org/abs/1803.07728

Colorization

Learns to predict the colors from “grayscale” images.

- Regression problem
- Done in the LAB space instead of RGB

[Zhang et al. ECCV 2018] 21



https://arxiv.org/abs/1603.08511
https://en.wikipedia.org/wiki/CIELAB_color_space

Auto-Encoder

Reconstructed
L e Ideally they are identical. ------------------ o input
x ~ x'
Bottleneck!
Encoder Decoder

X > g ¢ — fo e U

An compressed low dimensional
representation of the input.

Compress an image and then reconstruct it.

- Similarly to method of dimensionality reduction like PCA
— It must only keep important features.

Image from the excellent blog of Lilian Weng. 22



https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Constrastive

Each image is considered as a class.
New samples of this “class” are generated with heavy data augmentation.
Trained with usual softmax + cross-entropy.

o — -
T .-

b —‘xsi""

‘C‘\

Most of future self-supervised models also try to:
- Bring together the same image augmented differently
- Push away all others images

[Dosovitskiy et al. NeurIPS 2014] 23



https://arxiv.org/abs/1406.6909

SimCRL

view embedding —  projection

" Contrastive J

loss

YRR

SimCLR
o~
L S
J

| | | 1 exp($i,; /T)
Alternative version of the constrastive loss. _ Og ZQN 1 ex (s- /7_)
- Bring together the same image augmented differently k=1 = [k7#1] SXP54,k
— Push away all others images of the batch

[Chen et al. ICML 2020], image from Raffin’s twitter thread. 24



https://arxiv.org/abs/2002.05709
https://twitter.com/araffin2/status/1405527019102760965

SimCRL

Al f th | log OXP(54,3/T)
ternative version of the constrastive loss. o 2N

1ative versi . v | > k=1 Liksi) exp(Si,k/T)
— Bring together the same image augmented differently
- Push away all others images of the batch

It needs a very large batch size >= 1024!

The MLP that does the projection is essential.
— Learns useful transformations for the contrastive task
- But it’s discarded during the finetuning phase

[Chen et al. ICML 2020]

25


https://arxiv.org/abs/2002.05709

view = embedding __  projection

— — s MLP
N | f ol

2 y ™ 8, [™ Z

> Sautant P
U = 'moment xmw momentum Contraslive
o X = T ﬁ — W loss
2 V: - f.“ > y: = g= - z' QT

— g X

|

)
T \—r—IO{ Memory bank }

Reduces the need of large batch size with a memory bank:
- Stores previously computed projections z’
- Means more negative in the contrastive loss

The gradient is backpropagated only through one version of the network:
- The other network is, as in RL, a target network

—> It is updated with momentum 0, < a 6, + (1 — a) 6,

— Enforce stability in the memory bank representations

[Chen et al. arXiv 2020], image from Raffin’s twitter thread. 26



https://arxiv.org/abs/2003.04297
https://twitter.com/araffin2/status/1405527019102760965

embedding —— projection prediction

I
momentum
1

< <
gE —»[ z’ H L2 loss ]

L2 distance between only positive examples, not negative examples are used!

]
1 momentum
1

BYOL

L A

Why does the representation do not collapse?
- Meaning only producing a zero vector for any input would minimize the loss

Still an active area of research, but some intuitions:
—> Asymmetrical architecture with another MLP gg
- Momentum for the target network

[Grill et al. NeurIPS 2020] but extremely similar to Mean Teacher [Tarvainen and Valpola, NeurlPS 2017],
image from Raffin’s twitter thread. 27



https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/1703.01780
https://twitter.com/araffin2/status/1405527019102760965

What do we actually need for self-supervision?

Invariance to transformations:
- Two augmentations of the same image should produce the same representation
Disentangling of the dimensions:

— Each dimension of the representation should encode a different info

28



Barlow Twins

Representations
(for transfer tasks)

Distorted A Cross-correlation along
images Embeddings the batch dimension:
' Empirical Target B
A > Zb i%b,j
Cross-cofrr. Cross-corr. RN ;
T \/Zb (3%) \/Zb zb,_y
l-... £15’7'
J LBT £ Z(l - Cu)2 + A chijz
i i j#i
—_——— \ ,
B / fe ature invariance term redundancy reduction term
B Z
Y dimension

Encoder  Projector

Invariance to transformations:

—> First term forces each dimension i from both views to be very correlated (+1)
despite the views were generated by different transformations

Disentangling of the dimensions:

—> Second term forces each dimension i to be orthogonal (0) with dimension j # i
so that each dimension encodes a different information, aka no collapse

[Zbontar and Jing et al. ICML 2021] 29



https://arxiv.org/abs/2103.03230

Domain Adaptation



Setting

- Source domain/dataset is fully labeled

- Target domain/dataset is unlabeled

- Both represent the same classes

- Huge discrepancy in the pixels distribution

MNIST SYN NUMBERS SVHN

»

SOURCE

Els: )
TARGET 1 ‘18?5'

MNIST-M SVHN MNIST GTSRB

Source Domain Target Domain

¥ ‘l‘

GTAS (yes the game) Citysca pes 2



DANN: Gradient Reversal Layer

/ @
5
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4?0 — 39/. o g domain ilassih'cr Ga(-:04)
OJ* N\ : jzb J;;‘Q/ I's

feature extractor G;(6;) 4, o
cature extractor T\ Uf (?j‘o Sc?/ 4

o a;
00 ¢

forwardprop  backprop (and produced derivatives)

\
|$ E> B domain label d

oL d @

Gradient Reversal Layer (GRL) forces the ConvNet to maximize the loss of the

— Force to learn domain agnostic features

[Ganin et al. JMLR 2015]
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https://arxiv.org/abs/1505.07818

AdaptSegNet

Segmentation Network

Source Domain

Shared
DA DA

Target Domain

gradient flowing backward

Domain Adaptation Module

Source Prediction

- Lseg

Source /
Output

Feature

Map \\\ w
Dj — H Discriminator Network
Target\ \
Output c
. ’ Ladv
E — H/

Train the Discriminator on the probabilities of the source and target without the

Train the Segmentation Network on source for classification and also force the

discriminator to predict source given target images

[Tsai et al. CVPR 2018]

mgxngnﬁ(ls,lt).

‘C(ImIt) = Eseg(Is) + Aadvﬁad'v(lt)
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https://arxiv.org/abs/1802.10349

Two key ideas

Two key ideas for domain adaption in segmentation:
1. Adversarial loss forcing a similar representation for both source and target domains

2. Pseudo-labeling to generates labels for the unlabeled target domain

34



Other Problems



Not covered in this lecture

Zero-shot Learning:

- Not a single image of the class to predict, but access to metadata
- Ex: understand a Wikipedia description to classify a never-seen before animal

Semi-Supervised:

- A few amount (~¥10%) of the data is labeled, while the remaining is unlabeled but
present

- Most of the recent self-supervision literature took a lot of inspiration from it

- Often solved with contrastive, weights averaging, and pseudo-labeling with consistency

Weak supervision:
— Labels are imperfect
- Ex: training a model to predict the hashtag on Instagram photos

36



Small break,
then coding session!



