

LESS DATA

Deep Learning for Computer Vision

Arthur Douillard

https://arthurdouillard.com/deepcourse

Few-Shot Learning

Few-Shots Learning

LFW: Labeled Face in the Wild

Omniglot

match pairs

mismatch pairs

Alison Lohman, 1

Allan Houston, 1

Angelina Jolie, 4

Angelina Jolie, 3

Steven Spielberg, 7

Hebrew

Angelina Jolie, 15

Aurek-Besh Futurama

Ы

Greek

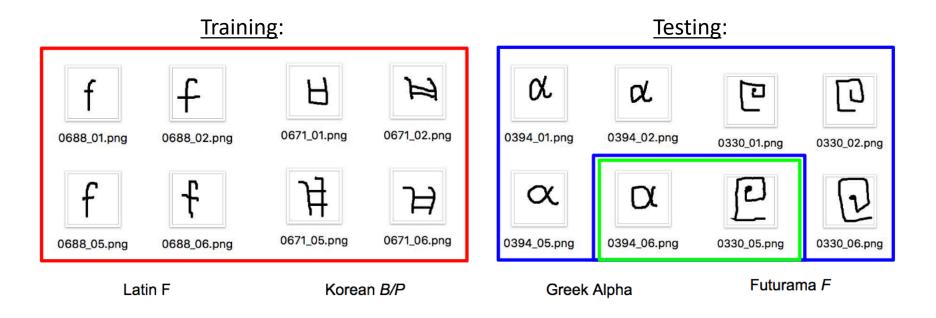
Korean

Latin Malay Sanskrit

Kaggle's Humpback Whale identification

Few-Shots Learning

- 1. Learn to classify the few labeled samples in the **background set**
- 2. With a a few labeled samples in support set, classify the query set



Number of labeled samples / class: K-shots

Number of classes in testing: N-ways

A huge, potentially growing number of classes.

Less than a dozen labeled samples per class.

Discriminative model is impossible.

What if we learn a metric instead?

Distance:

 $d(x_1, x_2) = \|f(x_1) - f(x_2)\|_2 \in \mathbb{R}^+$

Similarity:

$$s(x_1, x_2) = \cos(f(x_1), f(x_2)) \in [-1, +1]$$

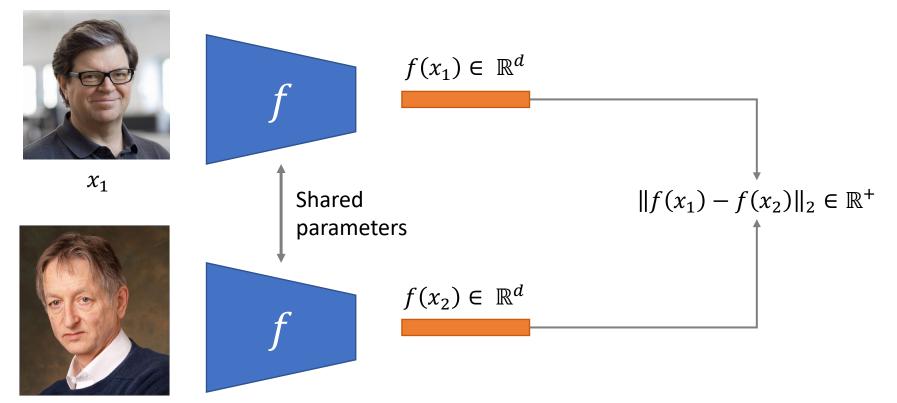
With $f(x) \in \mathbb{R}^d$ a features extractor (e.g. ConvNet).

Given two images of the class, we want:

- Minimize distance
- Maximize similarity

Given two images of different classes, we want:

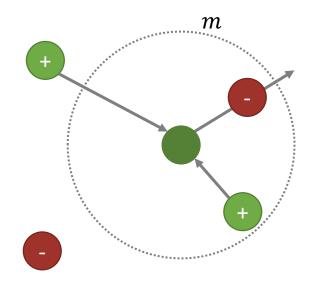
- Maximize distance
- Minimize similarity



*x*₂

$$D = \|f(x_1) - f(x_2)\|_2 \in \mathbb{R}^+$$

$$\mathcal{L}_{contrastive}(y, D) = \frac{1}{2}(1 - y)D^2 + \frac{1}{2}y\max(m - D, 0)^2$$



- The margin *m* may be hard to tune, especially because distributions can change through training
- A double-margin may improve to avoid collapsing all positive samples together
- Try to learn an absolute distance between images

We want to learn **relative distance** between samples

Given an anchor x_a , we want to have a small distance with a positive (same class) x_+ :

 $\min \|f(x_a) - f(x_+)\|_2$

And maximize with a negative (different class) x_{-} :

$$\max \|f(x_a) - f(x_-)\|_2$$

Therefore we want that:

$$||f(x_a) - f(x_-)||_2 > ||f(x_a) - f(x_+)||$$

$$||f(x_a) - f(x_-)||_2 - ||f(x_a) - f(x_+)|| > 0$$

Add a margin *m* to ensure extra separability:

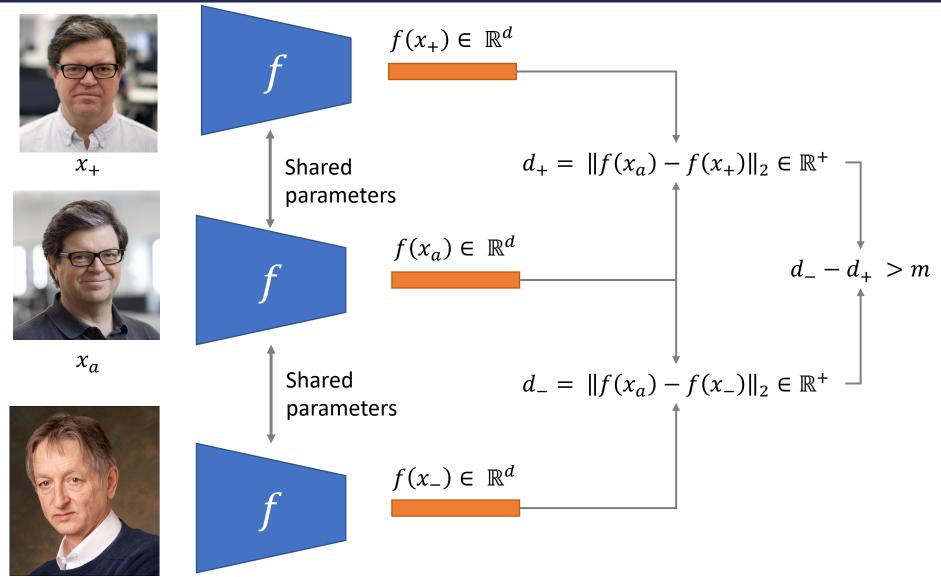
$$||f(x_a) - f(x_-)||_2 - ||f(x_a) - f(x_+)|| > m$$

Thus the loss is:

min max(
$$||f(x_a) - f(x_+)||_2 - ||f(x_a) - f(x_-)|| + m, 0$$
)

[Hoffer et al. SIMBAD 2015]

Triplet Network



Most triplets are easy.

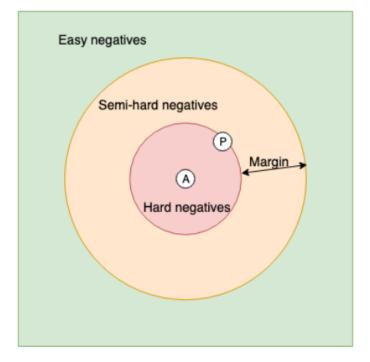
We want to sample either:

Hard negatives:

$$\|f(x_a) - f(x_+)\|_2 > \|f(x_a) - f(x_-)\| + m$$

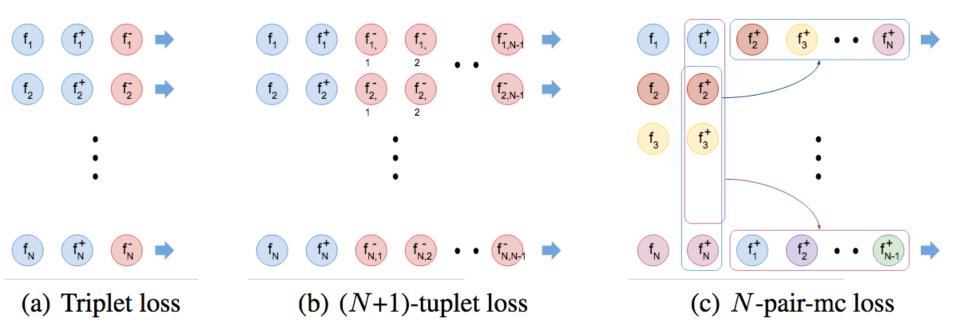
Semi-Hard negatives:

 $\|f(x_a) - f(x_+)\|_2 > \|f(x_a) - f(x_-)\|$



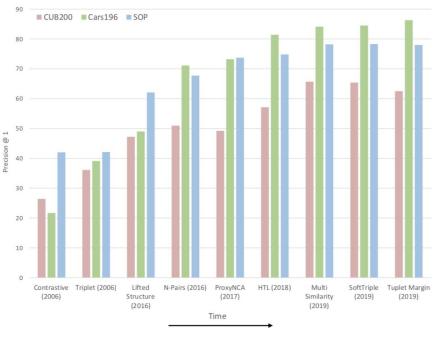
Pretty much essential to have State-of-the-Art performance with Triplet Networks!

N-Pairs

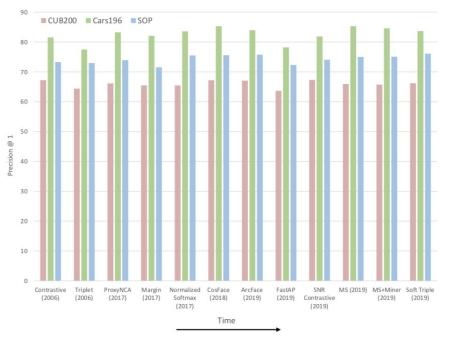


Efficient generalization of Triplet networks that uses the whole batch.

Troubles in Metric Learning...



(a) The trend according to papers



(b) The trend according to reality

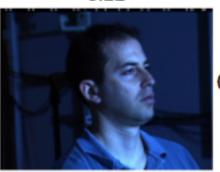
Fig. 4. Papers versus Reality: the trend of Precision@1 of various methods over the years.

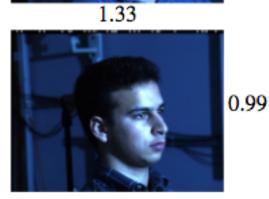
The gain of more recent Metric Learning models <u>may</u> come from:

- Better backbone
- Better hyperparameters tuning
- Better data augmentation

Triplet Network with semi-hard negative mining.

Pretty much solved the LFW dataset.

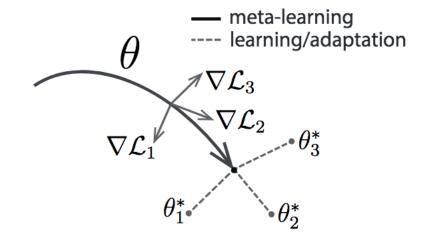




Distance between pairs

Learning to learn:

→ Learn a model that will be able to learn quickly given a few samples



Outer and inner loop:

- Inner loop learns to classify well a few labeled samples.
- Outer loop learns to have good weights for the inner loop.

During inference, perform only inner loop.

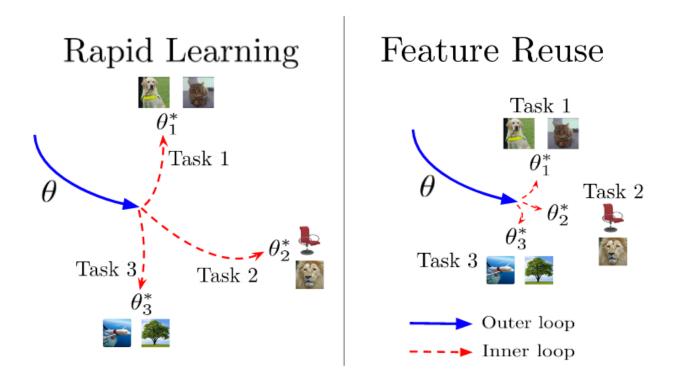
Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α, β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $T_i \sim p(T)$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while

Does MAML really learns to learn (rapid learning)?

More probably it manages to learn features that generalize well (feature reuse)



Self-Supervised Learning

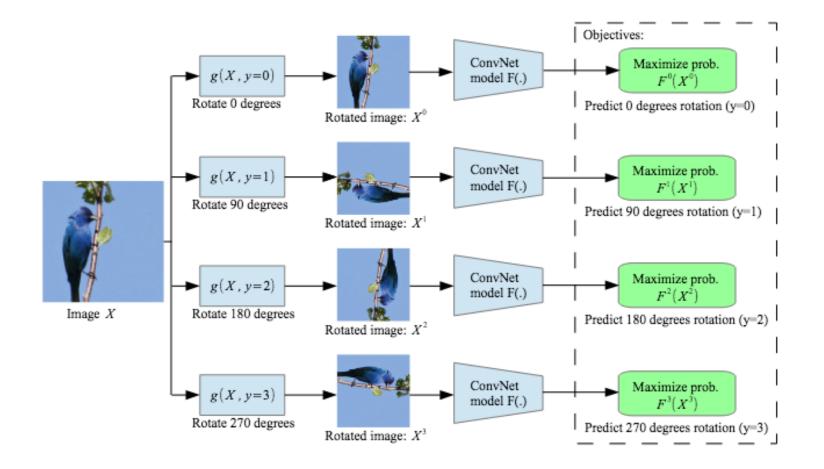
(also Unsupervised Learning)

Setting

- 1. Learn a backbone with a lot of **unlabeled data** using a self-designed objective
- 2. Freeze the backbone
- 3. Learn a classifier on top of it on labeled data.
- → Evaluate how much the learned representation (features extracted by ConvNet) is useful.

It can be useful to have a good model pretraining in order to do transfer learning later.

Rotation



Learn what is the rotation applied.

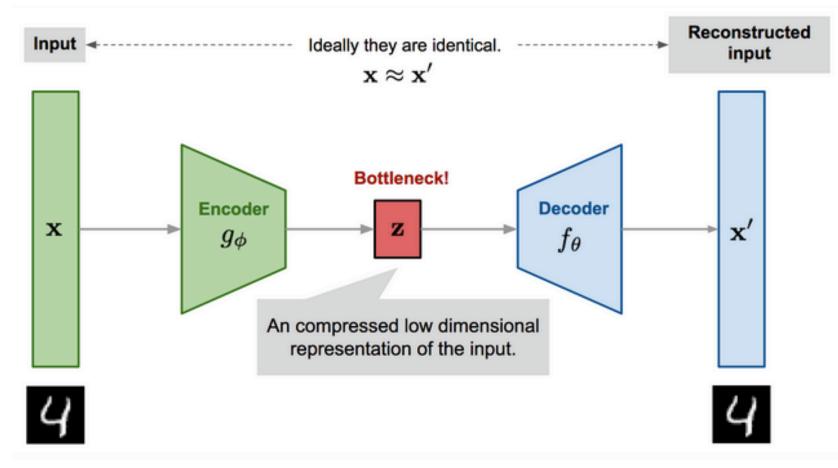
 \rightarrow Thus it must learn what is the structure of the visual world.

Colorization

Learns to predict the colors from "grayscale" images.

- \rightarrow Regression problem
- \rightarrow Done in the <u>LAB space</u> instead of RGB

Auto-Encoder



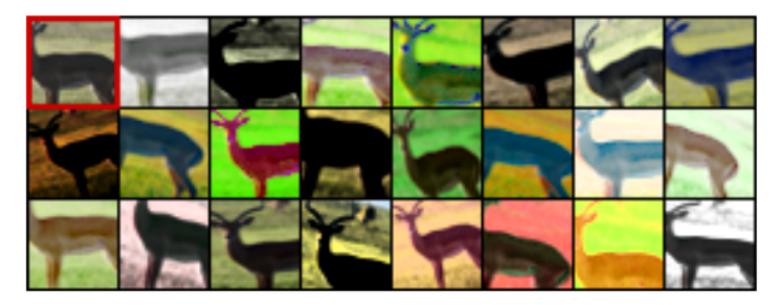
Compress an image and then reconstruct it.

 \rightarrow Similarly to method of dimensionality reduction like PCA

 \rightarrow It must only keep important features.

Each image is considered as a class.

New samples of this "class" are generated with heavy data augmentation. Trained with usual softmax + cross-entropy.

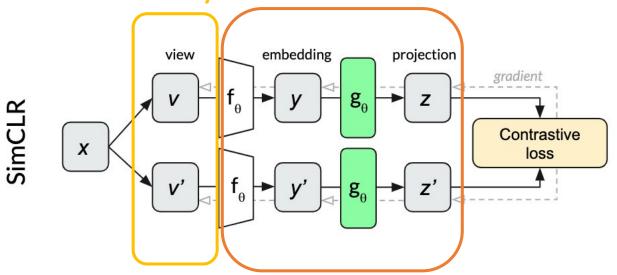


Most of future self-supervised models also try to:

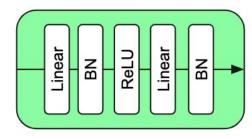
- Bring together the same image augmented differently
- Push away all others images

SimCRL

Batch of images is augmented twice differently



MLP



Extract features with ConvNet f_{θ} , then project it with a small MLP to produce $z \in \mathbb{R}^d$

Alternative version of the constrastive loss.

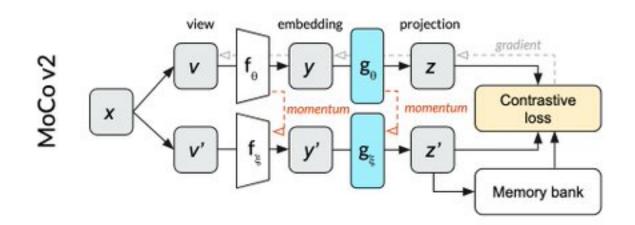
- $-\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$ ightarrow Bring together the same image augmented differently
- \rightarrow Push away all others images of the batch

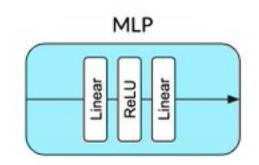
- Alternative version of the constrastive loss. $-\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$ \rightarrow Bring together the same image augmented differently
- \rightarrow Push away all others images of the batch

It needs a very large batch size >= 1024!

The MLP that does the projection is essential.

- \rightarrow Learns useful transformations for the contrastive task
- \rightarrow But it's discarded during the finetuning phase





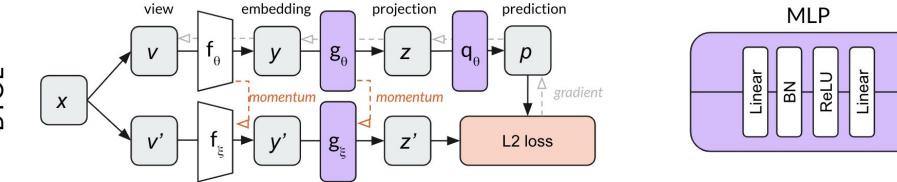
Reduces the need of large batch size with a **memory bank**:

- \rightarrow Stores previously computed projections z'
- \rightarrow Means more negative in the contrastive loss

The gradient is backpropagated only through one version of the network:

 \rightarrow The other network is, as in RL, a **target network**

- → It is updated with momentum $\theta_t \leftarrow \alpha \ \theta_t + (1 \alpha) \ \theta_s$
- ightarrow Enforce stability in the memory bank representations



L2 distance between only positive examples, not negative examples are used!

Why does the representation do not collapse?

 \rightarrow Meaning only producing a zero vector for any input would minimize the loss

Still an active area of research, but some intuitions:

- \rightarrow Asymmetrical architecture with another MLP q_{θ}
- \rightarrow Momentum for the target network

[Grill et al. NeurIPS 2020] but extremely similar to Mean Teacher [Tarvainen and Valpola, NeurIPS 2017], image from <u>Raffin's twitter thread</u>.

Invariance to transformations:

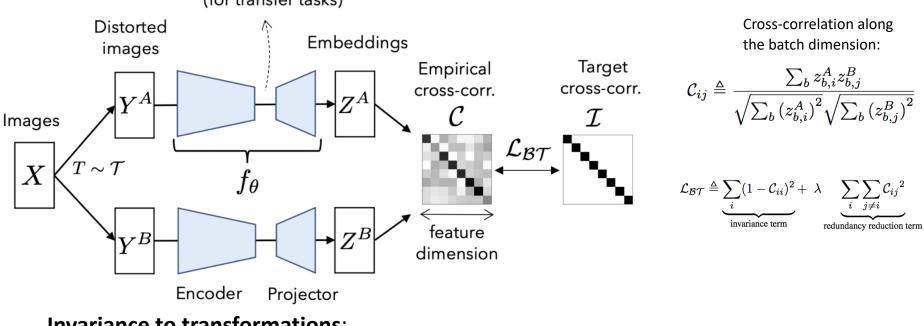
 \rightarrow Two augmentations of the same image should produce the same representation

Disentangling of the dimensions:

 \rightarrow Each dimension of the representation should encode a different info

Barlow Twins

Representations (for transfer tasks)



Invariance to transformations:

→ First term forces each dimension i from both views to be very correlated (+1) despite the views were generated by different transformations

Disentangling of the dimensions:

→ Second term forces each dimension *i* to be orthogonal (0) with dimension $j \neq i$ so that each dimension encodes a different information, aka no collapse

Domain Adaptation

Setting

- Source domain/dataset is fully labeled
- Target domain/dataset is unlabeled
- Both represent the same classes
- Huge discrepancy in the pixels distribution

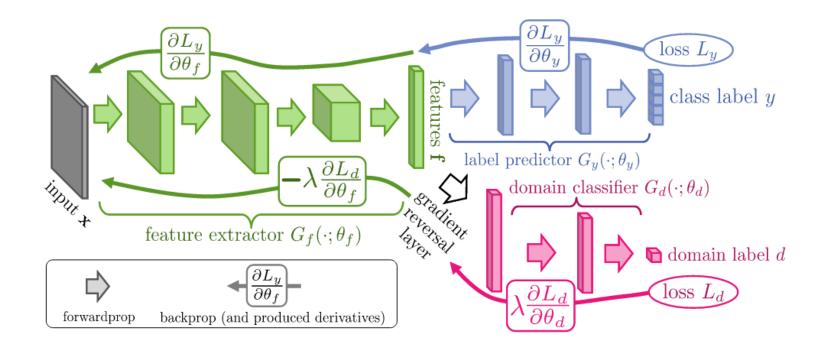
Source Domain

 $GTA5 \ ({\sf yes the game})$

Target Domain

Cityscapes

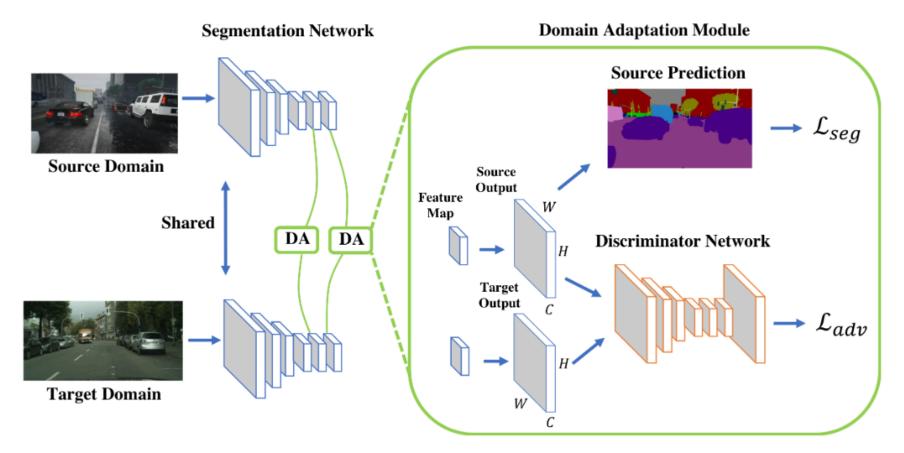
DANN: Gradient Reversal Layer



Gradient Reversal Layer (GRL) forces the **ConvNet** to maximize the loss of the **Domain Classifier**.

 \rightarrow Force to learn domain agnostic features

AdaptSegNet



- Train the Discriminator on the probabilities of the source and target without the gradient flowing backward
- Train the Segmentation Network on source for classification and also force the discriminator to predict source given target images

 $\max_{\mathbf{D}} \min_{\mathbf{G}} \mathcal{L}(I_s, I_t). \quad \mathcal{L}(I_s, I_t) = \mathcal{L}_{seg}(I_s) + \lambda_{adv} \mathcal{L}_{adv}(I_t)$

Tsai et al. CVPR 2018

Two key ideas for domain adaption in segmentation:

- 1. Adversarial loss forcing a similar representation for both source and target domains
- 2. Pseudo-labeling to generates labels for the unlabeled target domain

Other Problems

Zero-shot Learning:

- \rightarrow Not a single image of the class to predict, but access to metadata
- ightarrow Ex: understand a Wikipedia description to classify a never-seen before animal

Semi-Supervised:

- → A few amount (~10%) of the data is labeled, while the remaining is unlabeled but present
- \rightarrow Most of the recent self-supervision literature took a lot of inspiration from it
- \rightarrow Often solved with contrastive, weights averaging, and pseudo-labeling with consistency

Weak supervision:

- \rightarrow Labels are imperfect
- \rightarrow Ex: training a model to predict the hashtag on Instagram photos

Small break, then coding session!