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Convolutional Neural Networks



Images

3

Large dimensionality 𝑊 ×𝐻 × 𝐶
à Classifying a 224x224x3 images to 1000 classes with a single layer means 
more than 150M parameters!
à Need some dimension reduction tool

Fewly structured data
à MLPs have no prior on spatiality
à need more data



Before

4

𝒙 &𝑦𝑔

Lot of work on how to extract interesTng features

But with “hand-craWed” priors

𝑒

Hand-crafted Features Model

SIFT
HOG

Fisher
etc.

SVM
Gradient Boosting

Random Forest
etc.



Now
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𝒙 &𝑦𝑔

Use gradient descent and neural network to learn how to extract 
the right features

𝑓

Convolutional 
Neural Network Classifier

AlexNet
VGG

ResNet

Usually a linear 
projecTon



Convolution kernel

6GIF source 

Light blue: input image
Dark blue: convoluTon kernel
Green: output features

NB: I’m talking about convolutions, but it’s actually cross-correlation. The only difference is a transpose on the image.

Translation 
invariance!

𝑎 ⋅ 1 + 𝑏 ⋅ 2 + 𝑐 ⋅ 3 + 𝑑 ⋅ 4 + 𝑒 ⋅ 5 + 𝑓 ⋅ 6 + 𝑔 ⋅ 7 + ℎ ⋅ 8 + (𝑖 ⋅ 9)

https://m2dsupsdlclass.github.io/lectures-labs/


ConvoluTon Neural Network

7Wikipedia

Identity

Edge detecTon

Sharpen

https://en.wikipedia.org/wiki/Kernel_(image_processing)


Convolution Neural Network

8Wikipedia

A convolution kernel is a 
learned weight of the 
network

𝑾 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

https://en.wikipedia.org/wiki/Kernel_(image_processing)


On RGB images
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RGB Image 3×28×28

Kernel 3×5×5

Features 1×24×24

𝑋 ∗ 𝑊 =B
CD

E

𝑋CD ∗ 𝑊CD

One kernel 5×5 is applied on Red, one on Green, and one on Blue.
The three results are summed together pixel-wise. 



On RGB images
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RGB Image 3×28×28

Kernel 3×5×5

Features 1×24×24

𝑋 ∗ 𝑊 =B
CD

E

𝑋CD ∗ 𝑊CD

One kernel 𝟓×𝟓 per input channel!



On RGB images
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RGB Image 3×28×28

Kernel 3×5×5

Features 1×24×24

𝑋 ∗ 𝑊 =B
CD

E

𝑋CD ∗ 𝑊CD

Only produce one set of features…



On RGB images
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RGB Image 3×28×28

Kernel 2×3×5×5

Features 2×24×24

𝑋 ∗ 𝑊 CG =B
CD

E

𝑋CD ∗ 𝑊CG,CD



On RGB images
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RGB Image 3×28×28

Kernel 3×3×5×5

Features 3×24×24

𝑋 ∗ 𝑊 CG =B
CD

E

𝑋CD ∗ 𝑊CG,CD



On RGB images
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RGB Image 3×28×28

Kernel 4×3×5×5

Features 4×24×24

𝑋 ∗ 𝑊 CG =B
CD

E

𝑋CD ∗ 𝑊CG,CD



On RGB images

15

RGB Image 3×28×28

Kernel 4×3×5×5

Features 4×24×24

𝑋 ∗ 𝑊 CG =B
CD

E

𝑋CD ∗ 𝑊CG,CD

Likewise, these 4-channels features will be input to another kernel



On RGB images
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RGB Image 3×28×28

Kernel 4×3×5×5

Features 4×24×24

𝑋 ∗ 𝑊 CG =B
CD

E

𝑋CD ∗ 𝑊CG,CD

Notice features spatial dimension changed?



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 3×3

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 1, 𝑝 = 0



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 3×3

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 1, 𝑝 = 0

1𝑎 + 2𝑏 + 5𝑐 + 6𝑑



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 3×3

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 1, 𝑝 = 0

2𝑎 + 3𝑏 + 6𝑐 + 7𝑑



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 3×3

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 1, 𝑝 = 0



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 3×3

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 1, 𝑝 = 0



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝒔 = 𝟐, 𝑝 = 0

Stride equal to 2



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝒔 = 𝟐, 𝑝 = 0

Stride equal to 2



Kernel size, stride, and padding

24

Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝒔 = 𝟐, 𝑝 = 0

Stride equal to 2



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝒔 = 𝟐, 𝑝 = 0

Stride equal to 2



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 2, 𝒑 = 𝟏

Padding equal to 1, useful to keep spatial dimension constant 

0 0 0 0 00

0 0 0 0 00

0

0

0

0

0

0

0

0



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 2, 𝒑 = 𝟏

Padding equal to 1, useful to keep spatial dimension constant 

0 0 0 0 00

0 0 0 0 00

0

0

0

0

0

0

0

0



Kernel size, stride, and padding
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Input 4×4 Kernel 2×2 Output 2×2

Output volume: IJKLMN
O

+ 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a b

c d

𝑤 = 4, 𝑘 = 2, 𝑠 = 2, 𝒑 = 𝟏

Padding equal to 1, useful to keep spatial dimension constant 

0 0 0 0 00

0 0 0 0 00

0

0

0

0

0

0

0

0



Complexity & Space
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The larger the input features, and the number of output channels
à More compute, slower
à More intermediary activations to store, heavier



Pooling with a 2×2 kernel and stride 2
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Input 4×4 Average Pooling

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3.5 5.5 

11.5 13.5
Blur the edges

Max Pooling

6 8

14 16
Sharpen the edges

No learned parameters!



From crude to fine-grained patterns

31Thomas Robert’s Thesis

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


CNN
Architectures



Basic CNN
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?

Convolution

Max Pooling

Fully Connected

Softmax

Spatial 𝐶 × 𝐻 ×𝑊

Flat 𝐷



Basic CNN
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?

Flatten: merge all dimensions into one
à no loss of information
à huge dimensionality
à Dependent on the image size

Global Average Pooling: pooling with full kernel size
à lose a lot of informaTon
à Dimensionality of the number of channels
à No dependent on the image size



First ConvNet

35Thomas Robert’s Thesis

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


ConvNet that iniTated the Deep Learning revoluTon

36Thomas Robert’s Thesis

- Trained on ImageNet
- One of the first to use GPUs
- Model parallelism on 2 GPUs

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


Big ConvNet

37Thomas Robert’s Thesis

- Super large (134M parameters), mainly because of 
the flatten + fully-connected layers

- Similar to AlexNet in bigger
- Large kernel sizes (7x7 and 5x5)

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


MulTple towers in parallel

38Thomas Robert’s Thesis

- Convolutions with different kernel sizes in parallel
- Some relation to neuroscience
- Multi-scale view

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


Residual-based network

39Thomas Robert’s Thesis

- Super strong architecture, still important today

https://www.thomas-robert.fr/data/publis/TheseSlides_ThomasRobert.pdf


ResNet
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Hard to train very deep network
àGradient struggles to each earlier layers

[He et al. ECCV 2015]

https://arxiv.org/pdf/1512.03385.pdf


ResNet (2015)

41[He et al. ECCV 2015]

https://arxiv.org/pdf/1512.03385.pdf


DenseNet (2016)

42[Huang et al. CVPR 2017]

More residuals!

https://arxiv.org/abs/1608.06993


Squeeze-Excite Net (2017)

43[Hu et al. CVPR 2018]

Attention per channels

https://arxiv.org/abs/1709.01507


State-of-the-Art

44Paperswithcode.com

Without deep
ResNet-based + 
training on larger 
image resolution

ResNet-based +
data augmentaTon

NOT a CNN!
Covered in a later 
lecture

ResNet+Inception

PS: Most of the State-of-the-Art papers now use external data

https://paperswithcode.com/sota/image-classification-on-imagenet


Transfer Learning



Data
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Need a lot of data to train a modern CNN.

But what to do when dataset is not big enough?



Transfer Learning
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Convolution

Max Pooling

Fully Connected

SoftmaxGlobal Pooling

1. Train model on ImageNet with 1000 classes
2. Remove last fully connected layer
3. Add new fully connected with the number 

of classes of the target dataseet
4. Fine-tune model



Transfer Learning
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Convolution

Max Pooling

Fully Connected

SoftmaxGlobal Pooling

We can finetune only the new FC layer, or also the whole ConvNet.

Usually starts with a learning rate 10x lower.



Transfer Learning
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Convolution

Max Pooling

Fully Connected

SoftmaxGlobal Pooling

Transfer works better if the source domain is close to the target domain.

Learning cat vs dog after imagenet: easy

Learning to spot cancers on radiography after imagenet: harder



Transfer Learning

50Graph from Neil Houlsby



Pretrained models

51

Plenty of pretrained models in PyTorch on

Torchvision zoo:

Timm library:

https://pytorch.org/vision/stable/models.html
https://github.com/rwightman/pytorch-image-models/


Tricks



Data Augmentation
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Combine multiple image alterations to produce a “new” image.

These augmentations are done on-the-fly with different 
randomness each time.

Results:
- Increase artificially a small dataset, less overfit!
- Make the model more robust to image corruption



Dropout
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Randomly drop unit during a forward pass.

Drastically reduce overfitting:
- Sort of ensemble of networks
- Force all units to contribute

Usually only for fully connected layers.

[Sritastava et al. JMLR 2014]

https://jmlr.org/papers/v15/srivastava14a.html


Batch Normalization

55

Normalize intermediary
features.

During training with batch
Statistics. During testing with
running mean and std.

[Ioffe and Szegedy ICML 2015]

https://arxiv.org/abs/1502.03167


Small break,
then coding session!


